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Abstract The Michaelis–Menten enzymatic reaction is sufficient to perceive many
subtleties of network modeling, including the concentration and time scales separa-
tions, the formal equivalence between bulk phase and single-molecule approaches, or
the relationships between single-cycle transient probabilities and steady state rates.
Seven methods proposed by different authors and yielding the same famous Michaelis–
Menten equation, are selected here to illustrate the kinetic and probabilistic use of rate
constants and to review basic techniques for handling them. Finally, the general rate of
an ordered multistep reaction, of which the Michaelis–Menten reaction is a particular
case, is deduced from a Markovian approach.

Keywords Stochastic reaction chain · Enzyme kinetics · Steady-state ·
Random walk

1 Preliminary tools: the helpful scale separations

The approximation of concentration and time scales separations is often reasonable
in cellular biochemistry, but some discernment is necessary for its proper application,
in particular to define pseudo-first order constants and decide which reactions can be
considered as in quasi-equilibrium compared to others.
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1.1 Concentration scale separation

The wide differences of molecular concentrations in the cell greatly facilitate network
modeling. The concentration of the more concentrated reactant, generally called the
ligand, or the substrate in enzymology, can be associated to second-order constants
to give so-called pseudo-first order constants. This approximation strongly simplifies
elementary treatments, for example to define hyperbolic saturation functions through
equating the concentrations of total and free ligand. To apply the concentration scale
separation, it is important to decide which reactant should be fused to the second-order
constant. Depending on the cases, the same molecule can behave as either the leading
macromolecule or as the ligand. This is the case, for example, for a transcription
factor, say the estrogen receptor (ER), activated by the estrogen hormone (E2) and
then capable of binding to a given unique gene (G) from the X chromosome. Even if
ERs are not very numerous in the cell, they are however much more abundant than the
single gene. Hence, ER can be considered as a diffusible ligand whose concentration
varies slowly compared to the dynamics of its interaction with the gene. Conversely,
when studying the activation of ER by E2, the ligand is now E2, which should be
integrated in pseudo-first order rates of ER state changes. If the binding of E2 to ER
and the binding of ER to G are to be mixed in the same model, a new approximation
intervenes: the time scale separation.

1.2 Time scale separation

In the example introduced above, the interactions between E2 and ER can be considered
as more dynamic than those occuring between ER and G. Time scale separation is
particularly important to obtain smooth graded interactions between a ligand and a very
unique binding site [1]. This approximation allows kinetic and equilibrium constants to
coexist in the same equation, as long proposed [2]. Once built, the first-order network
can be treated through different methods yiedling equivalent results. A survey of
some of them is proposed below using a founder example of historical importance:
the Michaelis–Menten (MM) enzymatic reaction. In these methods, rate constants are
envisioned as frequencies corresponding to the inverse of mean waiting times. Indeed,
molecular events are primarily dictated by waiting times whereas the transitions are
themselves considered as instantaneous. Before examining the MM reaction, it is first
necessary to introduce elementary recipes mixing kinetic and probabilistic thinking
[3,4] and which can be addressed using the simple questions of Fig. 1.

2 Shortcuts to steady state modeling

Fundamental kinetic rules are illustrated by the three simple reactions shown in Fig.
1. For (a) and (b), what is the rate constant of the global transition from A to B and
what is the mean lifetime in state A? For (c), what is the probability for A to shift to
B rather than to C and what is the mean lifetime in state A?

In Fig.1a, there are two ways to leave A so that the global rate is the sum of
the individual rates k = k1 + k2. This intuitive result is related to a property of
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Fig. 1 Basic rules of direct rate
constant manipulation

the exponential distribution ξ(θ). If X = ξ(λ) and Y = ξ(μ) are two independent
random variables with exponential law, then min(X, Y ) = ξ(λ+ μ). Indeed, ξ(θ) is
characterized by its tail P(ξ ≥ x) = e−θx . Hence P(min(X, Y ) ≥ x) = P(X ≥ x
and Y ≥ x) = P(X ≥ x)P(Y ≥ x) = e−λx e−μx = e−(λ+μ)x .

The rate of the global transition of Fig. 1b is obviously lower than that of Fig. 1a
since there are two waiting times from A and B. The mean time to reach B from A
is 1/k1 + 1/k2 and the mean lifetime of A is 1/k1. Hence, in case of continuous
supply with A, the frequency of the arrivals to B is the reciprocal of its mean time:
k = k1k2/(k1 + k2).

For Fig. 1c, the probability to obtain B is k1/(k1+k2) and the mean lifetime in state
A is the same as for Fig. 1a: 1/(k1 + k2). These results are the very basic ingredients
of network modeling and will be used in the following section.

3 Seven ways to the Michaelis–Menten reaction rate

The 2-step Michaelis–Menten enzyme reaction scheme represented in Fig. 2 has
become an unavoidable chapter of enzymology textbooks and a masterpiece of bio-
chemistry courses. Interestingly, a sort of game has been established by different
authors to propose new alternative methods of treatment. Some of them are of great
pedagogical interest and will be listed below, but let us first consider the pioneer work
of Michaelis and Menten.

3.1 Michaelis–Menten: the quasi-equilibrium assumption

The names of Michaelis and Menten [5] are associated with both the hyperbolic equi-
librium fraction of saturation Y = [S]/(Kd + [S]) and the elementary steady state
enzymatic reaction rate k = kc[S]/(KM + [S]) where KM is precisely known as the
Michaelis constant. But in fact, if the founding contribution of Michaelis and Menten to
biochemical modeling cannot be denied, they did not discover these two fundamental
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Fig. 2 The famous Michaelis–Menten enzymatic reaction, where an enzyme E catalyses the conversion
of a substrate S into a product P . The final reaction of rate kc is considered as irreversible

bases of systems biology. The Michaelis–Menten equilibrium hyperbola, also known
as the isotherm of Langmuir, was described by Biot [6] and the Michaelis constant was
introduced by Briggs and Haldane [8]. The name of Michaelis was perhaps given to the
Michaelis constant in honour of his previous scientific contribution. Nevertheless, the
approach of Michaelis–Menten remains interesting because they seemed to assume,
non-explicitely or unintentionally, the principle of time scale separation. As explained
by Briggs and Haldane, Michaelis and Menten considered that the kinetics of nonco-
valent interaction between the enzyme and the substrate is much more rapid than that
of the catalytic reaction, so that they used the dissociation equilibrium constant instead
of the Michaelis constant introduced later. Further confusing the situation, Michaelis
and Menten did not write their constant Kd but Ks [5], which should be interpreted
as the Kd for the substrate (s) [8].

The method of Michaelis–Menten can be described as follows. Given that cataly-
sis concerns only the fraction of enzyme bound to the substrate, the rate of product
synthesis (k) normalized by the total amount of enzyme [E]tot is

k = kc
[E S]
[E]tot

= kc
[E S]

[E] + [E S] . (1a)

Considering that the catalytic reaction is infrequent compared to the binding and
dissociation reactions, the substrate and the enzyme can be assumed to be in equilib-
rium and the equilibrium constant can be written as a ratio of concentrations,

Kd = [E][S][E S] . (1b)

Combining these two equations yields

k = kc
[S]

Kd + [S] . (1c)

3.2 Briggs and Haldane: the steady-state assumption

In the classical scheme represented in Fig. 2, the catalytic transition is represented by
a one-way arrow. The system is thus said to be micro-irreversible, which means that
it is out of equilibrium and can be sustained only through to a continuous refuelling
with fresh substrate. An in depth analysis of the legitimacy of the quasi-steady state
approximation is proposed in [7]. The fraction of enzyme bound to the substrate is the
steady state resultant of its formation and its disappearance according to [8]

ka[E][S] = (kd + kc)[E S]. (2a)
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Therefore we have

[E]
[E S] =

kd + kc

ka[S] , (2b)

so that

k = kc
[E S]

[E] + [E S] =
kcka[S]

kd + kc + ka[S] = kc
[S]

KM + [S] , (2c)

where

KM = (kd + kc)/ka . (2d)

3.3 The first-order network of King and Altman

The method of King and Altman [9] was a precursor of modern single-molecule
approaches in that it is basically probabilistic. Let us recall its rules.

(i) All rates should be first- or pseudo-first order (s−1). In the scheme of Fig. 2, there
is a second-order constant: ka (M−1s−1). As explained in section 1, by virtue of
the excess of substrate relative to the enzyme, a pseudo-first order constant can
be defined k∗a = ka[S].

(ii) A single kind of molecule should be considered in the different nodes of the
network: the leading molecule is in the present case the enzyme.

(iii) Finally, every state transition must be associated to a single arrow.

The MM scheme of Fig. 3 is a simplistic network made of only two nodes. Since
there are two ways to convert [E S] into [E], it is necessary to give to this transition
the rate obtained by summing the individual rates (as for Fig. 1a). As a result, one
obtains the first order network schematized in Fig. 3.

This scheme shows that a single enzyme can exist only in two forms. The probability
of each form is straightforwardly defined by a King and Altman-like graphical method:

PE S = →
← +→ =

ka[S]
kd + kc + ka[S] , (3a)

and

PE = ←
← +→ =

kd + kc

kd + kc + ka[S] , (3b)

Fig. 3 The MM reaction redrawn as a 2-node network in the manner of King and Altman
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so that the rate is simply

k = kc PE S = kcka[S]
kc + kd + ka[S] . (3c)

3.4 The frequency of successful enzyme cycles

The total time T necessary for a single enzyme to achieve the reaction of Fig. 2 is the
sum of two residence times: that of E waiting for catching a substrate molecule and
then of E S, waiting for either a reaction or a dissociation [3]. The first one is simply
1/ka[S] and the second one is 1/(kd + kc) (see the question of Fig. 1c), so that

T = 1

ka[S] +
1

kd + kc
. (4)

The turnover frequency is the reciprocal of this time, ν = 1/T , but all the turnovers
are not successful since [E S] can simply dissociate into E+S instead of giving E+P .
The probability of this latter possibility is P(E S→ P) = kc/(kd + kc) (see Fig. 1c),
giving the final expression

k = ν
kc

kd + kc
= kcka[S]

kc + kd + ka[S] . (5)

3.5 The frequency of non-abortive cycles

This is the pessimistic counterpart of the previous approach, but which works as well
[10]. The probability that E S merely dissociates instead of reacting is the comple-
mentary to the previous one P(E S → E + S) = kd/(kd + kc) and in the case, the
whole chain is reinitiated. This situation can be explicitly transcribed into

〈T 〉 = 1

ka[S] +
1

kd + kc
+ kd

kd + kc
〈T 〉. (6a)

It implies, after some rearrangements,

k = 1

〈T 〉 =
kcka[S]

kc + kd + ka[S] . (6b)

3.6 Sum of direct conversion times

This powerful method is inspired from [11–13]. In the steady state, the rate of product
formation k is the inverse of the sum of the forward conversion times for all enzyme
states, which can be written as

k = 1
∑

i T→i
, (7)
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where T→i is the time necessary to directly reach the objective (release of the product)
when starting from the enzyme state Ei . For the Michaelis–Menten reaction, only two
states of the enzyme are to be considered: E waiting for a substrate and E S waiting
for reacting. For the latter, the calculation is immediate,

T→E S =
1

kc
. (8)

For E , the forward rate is ka[S] conditioned by the probability that when bound
to S, the reaction proceeds rather than the substrate dissociates, which is, as defined
previously, equal to kc/(kd + kc). Hence, one has

T→E S + T→E =
1

kc
+ 1

ka[S] kc
kd+kc

, (9)

which implies

k = 1

T→E S + T→E
= kcka[S]

kc + kd + ka[S] . (10)

3.7 Transient approach

Interestingly, all the methods described above avoid transient treatments, but the mean
cycling time obtained in this way expectedly gives the same results. At the single-
enzyme level, a single-MM reaction follows a biexponential cycle [14]. The MM
behaviour can be recovered as the reciprocal of the mean time of a single cycle between
the enzyme state waiting for a substrate (E0) and the enzyme state that released the
first product (E1). The transient behaviour of this cycle is obtained by solving the
following system

dPE0(t)

dt
= kd PE S(t)− ka[S]PE0(t), (11a)

dPE S(t)

dt
= ka[S]PE0(t)− (kd + kc)PE S(t), (11b)

dPE1(t)

dt
= kc PE S(t). (11c)

At every time, a single enzyme can take only one of these three states so that

PE0 + PE S + PE1 = 1. (11d)

With the initial condition PE0(0) = 1, this system predicts that the probability of
cycle achievement at time t approaches 1 according to

PE1(t) = 1− e−μt
(μ

λ
sinh λt + cosh λt

)
, (12a)
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where

μ = (kd + kc + ka[S])/2, λ =
√

μ2 − kcka[S]. (12b)

The first moment of the distribution (12a) gives the mean time of a single cycle,

〈T 〉 =
∞∫

0

t PE1(t) dt = 2μ

μ2 − λ2 =
kd + kc + ka[S]

kcka[S] (13)

whose inverse is the average product formation rate.

3.8 Markovian modeling

A brute force approach is to define the general equation valid for any n-step enzymatic
reaction and then to simplify it for the case of the 2-step MM reaction. Indeed, the
reaction of Michaelis–Menten is a minimal version of the heterogeneous linear walk
represented in Fig. 4 and involved in many research areas beside this particular context
[15–17].

Note that to obtain such a chain, it is sometimes necessary to prune some branches
in case of disordered events (see an example in Appendix 5.1). This n-step chain is
micro-irreversible because k−n = 0. This general chain can be used as a common
frame adaptable to many different enzymatic reaction schemes, simply by replacing
the first-order constants by appropriate pseudo-first order ones. The mean arrival time
of this generic reaction is (see Appendix 5.2 for a derivation of this expression)

〈T 〉 =
n−1∑

�=0

n−�−1∑

i=0

1

k+i

�+i∏

j=i+1

k−j
k+j

. (14)

This impressive formula dramatically simplifies for the Michaelis–Menten reaction,
reduced to three constants k+0 = ka[S], k+1 = kc and k−1 = kd ,

〈T 〉 = 1

ka[S] +
1

kc
+ kd

ka[S]kc
. (15)

Considering that a single enzyme is recycled with a period 〈T 〉 the frequency of
the successive state conversion cycles corresponds to the reaction rate

Fig. 4 First order chain where the different nodes represent different states of the same enzyme (con-
formation, post-translational modification, substrate(s) ligation(s) complexes etc.). The kinetic constants
associated to each transition are labelled with + or − depending on whether they are forward or backward
transitions and the indices refer to the starting state of the enzyme. It is important to note that the enzyme
is not consumed during the reaction but is simply recycled (En = E0)
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k = 1

〈T 〉 =
kcka[S]

kc + kd + ka[S] . (16)

4 Conclusion

The previous section includes eight paragraphs whereas seven methods had been
announced, because the first one does not correspond to a steady state situation.
Somewhat ironically the so-called Michaelis–Menten reaction has not been properly
described by Michaelis–Menten. Alternative methods exist to recover the steady state
MM equation in addition to those reviewed here, including for example the chemical
master equation [18], but the methods listed above are sufficient to provide the main
recipes for modeling first order biochemical networks, which are the basics of systems
biology.

Acknowledgments P.R. is Senior Research Associate of the Belgian Fonds National de la Recherche
Scientifique (FRS-FNRS).

5 Appendices

5.1 Branch pruning to generate a linear chain

The reduction of disordered cycles to ordered transitions has been addressed for exam-
ple in [4,13]. The most general treatment of a linear chain with one input and one
output and including a branched module, leads to a Michaelian kinetics with respect
to the distribution of the reaction time between the input and output, irrespective of
the complexity of the intervening module.

In a simplified case, if the fraction of time spent by the enzyme in the forms E A and
E B (Fig. 5), is negligible compared to its total mean cycling time, these alternative
forms can be eliminated and the disordered individual rates can be replaced by ordered
rates according to

kAB = kA
k′B

k′B + k−A
+ kB

k′A
k′A + k−B

, (17a)

k−AB = k′−B
k−A

k−A + k′B
+ k′−A

k−B

k−B + k′A
. (17b)

Fig. 5 How to compress lateral
alternative states (top scheme)
into an unbranched ordered
chain (bottom scheme)
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In addition, postulating that the walk is random forces to assume that the transitions
kA and kB do not influence each other. For example, if they are the pseudo-first order
rates of ligation to two substrates A and B, the binding of one substrate has no influence
on the binding of the other one. In this case, kA = k′A and kB = k′B and the global
rates are

kAB = kAkB

R
, k−AB = k−Ak−B

R
, (18a)

with

R = (kA + k−B)(k−A + kB)

kA + kB + k−A + k−B
. (18b)

5.2 Mean completion time for a general chain

Equation (14) can be rigorously obtained through a continuous time Markovian mod-
eling. In the following formulation, the probabilities of the different enzymatic states
are written Pi (t), i = 0, 1, . . . , n, and correspond to the amount of final state i at time
t . Their evolution is determined by a linear differential system,

d

dt
Pi (t) =

n∑

j=0

Âi j Pj (t), i = 0, 1, . . . , n, (19)

with the initial condition Pi (0) = δi,0. The matrix Â is numerical and contains the
transition rates: the coefficient Âi j is equal to the rate of the transition j → i . As the
only allowed transitions are from j to j, j ± 1, the matrix Â is tridiagonal; in addition
all its column sums are equal to 0,

∑n
i=0 Âi j = 0 (a consequence of the conservation

law
∑n

i=0 Pi (t) = 0). The last column of Â is also zero since n is an absorbing state.
For this reason, it is sufficient to consider the restriction A of Â to its first n rows and
n columns, A = ( Âi j )0≤i, j≤n−1. The differential system can then be written as

d

dt
P(t) = AP(t), where P(t) = (Pi (t))0≤i≤n−1, (20)

supplemented by the extra equation d
dt Pn(t) = k+n−1 Pn−1(t), as well as the initial

condition P(0) = (1, 0, . . . , 0)t .
Our purpose is to compute

〈T 〉 =
∞∫

0

dt t
dPn(t)

dt
= k+n−1

∞∫

0

dt t Pn−1(t). (21)

Up to the factor k+n−1, this is the last component of the length n vector 〈T〉 =
∫∞

0 dt t P(t).
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Let us observe that the solution of the differential system is formally given by

P(t) =
∞∑

k=0

tk

k! AkP(0) = et A P(0), (22)

where, as indicated, the exponential of the matrix t A is defined by its Taylor series.
Applying A2 on 〈T〉, using A2P(t) = d2

dt2 P(t) and integrating by parts, we obtain

A2〈T〉 =
∞∫

0

dt t
d2P(t)

dt2 =
[
t

dP(t)

dt

]∞
0
−

[
P(t)

]∞
0
= P(0), (23)

where we have used the fact that P(t) goes exponentially to zero when t →∞. From
this we obtain that 〈T〉 = A−2P(0). Taking the last component of this vector equation
and using P(0) = (1, 0, 0, . . . , 0), we find that

〈T 〉 = k+n−1 (A−2)n−1,0 = k+n−1

n−1∑

i=0

A−1
n−1,i A−1

i,0 (24)

is proportional to the scalar product of the last row of A−1 and its first column.
Let us first apply this formula to the simplest situation, namely when all transition

rates k±i are equal to 1. In this case, the entries of A are equal to +1 on the lower and
upper diagonals, namely Ai,i±1 = +1. They are equal to −2 on the main diagonal,
with the exception of A00 = −1. One can verify that the inverse of A is given by

A−1
i j = max(i, j)− n, 0 ≤ i, j ≤ n − 1. (25)

We therefore have A−1
n−1,i = −1 and A−1

i,0 = i − n, and the following result for 〈T 〉,

〈T 〉 =
n−1∑

i=0

(n − i) = n(n + 1)

2
. (26)

In the completely general case with arbitrary rates, the matrix A takes the following
form

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−k+0 k−1 0 . . . . . . 0
k+0 −(k+1 + k−1 ) k−2 . . . . . . 0
0 k+1 −(k+2 + k−2 ) . . . . . . 0
0 0 k+2 . . . . . . 0
. . . . . . . . . . . . . . . k−n−1
0 0 0 0 k+n−2 −(k+n−1 + k−n−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (27)
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Fig. 6 Extended MM reaction where the catalytic reaction is reversible

Because the column sums of A are all zero except the last one which is−k+n−1, the

last row of A−1 is constant and equal to A−1
n−1,i = − 1

k+n−1
. Beside, the first column of

A−1 is somewhat more complicated and given by

A−1
i,0 = −

1

k+i

n−1−i∑

�=0

k−i+1 . . . k−i+�

k+i+1 . . . k+i+�

, i = 0, 1, . . . , n − 1, (28)

where, by convention, the term � = 0 is set to 1. We then obtain

〈T 〉 =
n−1∑

i=0

1

k+i

n−1−i∑

�=0

k−i+1 . . . k−i+�

k+i+1 . . . k+i+�

, (29)

which is equivalent to (14) upon the interchange of the two summations.

5.3 Testing another example: the 3-step enzymatic reaction

To validate the above recipes, let us apply them to a slightly more complicated (3-step)
enzymatic reaction shown in Fig. 6.

The 3-step reaction is more realistic than the traditional 2-step MM reaction of Fig.
2. Indeed, the last transition of the MM scheme (rate kc in Fig. 2) mixes two elemen-
tary reactions: the catalysis sensu-stricto and the dissociation of the product from the
enzyme. From a chemical viewpoint, the catalytic reaction has no obvious reason to
be micro-irreversible. Instead, irreversibility can be understood as the consequence of
the very low concentration of the product in the medium preventing it to rebind to the
enzyme. This is true in vitro when measuring initial reaction rates because no product
molecules are added in the reaction mixture. This is also generally true in vivo because
the products are immediately removed by sequestration or by subsequent reactions of
which they are the substrates, so that their steady state concentration remains negli-
gible in the cell. Whatever the method used, the rate corresponding to the scheme of
Fig. 6 is the following function of the substrate concentration

k = kckpka[S]
kpkc + kpkd + kdk−c + (kp + kc + k−c)ka[S] . (30)

The most direct methods to obtain this result are listed below.

5.3.1 The King and Altman method

The first order enzyme cycle corresponding to Fig. 6 is represented in Fig. 7.
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Fig. 7 The first order cycle of the reaction of Fig. 6, whose drawing is a prerequisite for using the King
and Altman procedure

The turnover rate of a single-enzyme corresponds to the reaction rate and is

k = kp PE P , (31)

where PE P is given by the graphical method of King and Altman.

PE P can be calculated by hand by replacing every graph by the product of rates
corresponding to the arrows, but the result can be more safely obtained using an
algorithm such as the KAPattern algorithm of [19], very useful for more complex
networks.

5.3.2 The sum of direct conversion times

Here the rate reads

1

k
= 1

kp
+ 1

kc
kp

k−c+kp

+ 1

ka[S]
kc

k p
k−c+k p

kd+kc
k p

k−c+k p

. (32)

5.3.3 Markovian modeling of a random walk

We obtain by this method

1

k
= 1

ka[S] +
1

kc
+ 1

kp
+ kd

ka[S]kc
+ k−c

kckp
+ kdk−c

ka[S]kckp
. (33)
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